ITERATION METHODS OF SOLVING SOME
PROBLEMS IN THERMOSTATICS
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We shall congider the following thermostatic problems:
Au=01inDy, ujg=F; (1)
Au=0inD,, ulg=Ff. (2)

where Dy is an arbitrary region bounded by a piecewise closed surface S; u(x) is the temperature field; x

= (X1, X3, X3); and Dg is a region external to the surface S, When the boundary condition is of the form 8u
/on|g = £, the problems defined by Egs. (1) and (2) will be denoted by Egs. (1a) and (2a), We propose an itera-
tion processes for the solutions of the problems defined by Egs. (1), (2), (1a), and (2a), and derive approxi-
mate formulas for the thermal resistance of a body of arbitrary shape, It is shown that the sclution of Eq,
(1) can be written in the form

a 1
w = [u gt g = Jmpn ), (3)
S

where ry¢ = |[x~t|, ng is the external normal to the surface passing through the point t; and £ () can be cal-
culated by the following iteration process:

o of
By = Bpn — Tag’ W= —1aa’ (4
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B= =a AF“_.,S W e T oy O (3)

where a > 0 is an arbitrary number which can be chosen so that the process defined by Eq, (4) converges
as fast as possible, For example, a =4/3 when S is a sphere,

The solution of the problem defined by Eq. (1a) subjected to the condition | f(s)ds = 0 {this condition
N
must be satisfied if the problem is to have a solution) can be obtained from the formula:
o () dt

- ~1 (6)
u(x)—£ dnre 6 (8) ,,11"; O (t?,

where oy, ¢) is found from

a1
a,.“=~867s -man(t)dt+2f, g =2f . (7)

For the electrostatic capacitance of a body (which differs from the thermal conductance of this body
only by a numerical factor) we have obtained the following approximate formula:

C=4n)S}|* {ji

The solution of Eq, (2) can be obtained from the formula:

tds 11
dtds } L 1S|=mesS. (8)
r'ts

o

a A
u(x)=.§u (t)ErT, gy dt+- ) u=’111nmnn, (9
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where
Py = — 4 +j (t)dt+2'f—~'°°—) —2(f—i) (10)
If+1 M SP'n ( [s] y Po= I's| s
and the constant ¢ is obtained from the condition J' Kg)dat =0,

r

The solution of the problem defined by Eq. (2a) is found from Eq. (6), in which o) is calculated from
Egs. (4)-(5) with A replaced by the operator A*:

‘9 1
A¥g = .
? é Ong  2nrg owar. 11

All the above iteration processes converge at the rate of a geometric progression,

The approximate formula for the thermal resistance between two surfaces, S; and $) (8; surrounds
Si) is

<= \slll y“(s)ds_lé.,ly“(s)ds' a2
Sy Se
where
L ics,,
0 () = S-Go ® ;;:::Uo(t) dt, oy (1) = 21% ll (13)
sits: _.é—l/?o\—, tCS,,

and |S| represents the area of the surface S. The formula given by Eq, (8) was used on the Minsk-22 com-
puter to calculate the capacitance of a unit cube, -The result was C; = 0,64 which differs from the published
result Cy = 0.65 by less than 3%, We have also calculated the capacitance of a circular cylinder of length
oL and radius a for L/az = 0,1, The error in the zero-order approximation did not exceed 0.03; Cy = C/47,

The foregoing leads us to conclude that the proposed iteration processes are very effective for the
numerical and approximate analytic solution of problems in thermostatics.
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